

Hardrock Energy

Pannello rigido in lana di roccia non rivestito a doppia densità, ad elevata resistenza a compressione, calpestabile, per l'isolamento termico, acustico e la sicurezza in caso di incendio di coperture inclinate.

Particolarmente indicato nel caso di tetti in legno e ventilati dove apporta un significativo incremento delle prestazioni acustiche e del comfort abitativo.

Formato 1200x600 mm e 2400x600 mm.

VANTAGGI

- Prestazioni termiche: la combinazione di conducibilità termica e densità media assicura un ottimo comfort abitativo estivo ed invernale.
- Proprietà meccaniche: l'elevata resistenza a compressione (carico puntuale) del pannello lo rende un solido appoggio per l'orditura di supporto del manto di copertura e permette di realizzare l'isolamento con continuità (senza l'interposizione di listelli di contenimento), assicurando inoltre una calpestabilità ottimale, sia in fase di esecuzione delle coperture, che ai fini manutentivi.
- Stabilità dimensionale: il pannello non subisce variazioni dimensionali o prestazionali al variare delle condizioni termiche e igrometriche dell'ambiente.
- Per maggiori approfondimenti, vedi anche pp. 47, 73, 74, 81

- Assorbimento acustico: la struttura a celle aperte della lana di roccia contribuisce significativamente al miglioramento delle prestazioni fonoisolanti della copertura su cui il pannello viene installato. Sono disponibili test acustici di laboratorio.
- Comportamento al fuoco: il pannello, incombustibile, in caso di incendio non genera né fumi tossici né gocciolamento; aiuta inoltre a prevenire la propagazione del fuoco, caratteristica particolarmente importante in caso di tetti ventilati.
- Permeabilità al vapore: il pannello, grazie ad un valore di µ pari a 1, consente di realizzare pacchetti di chiusura "traspiranti".

Prodotto disponibile anche con il nuovo sistema di pallettizzazione su supporti in lana di roccia. Vedi p. 11.

Dati tecnici	Valore	Norma
Classe di reazione al fuoco	A1	UNI EN 13501-1
Conduttività termica dichiarata	$\lambda_D = 0.036 \text{ W/(mK)}$	UNI EN 12667, 12939
Resistenza a compressione (carico distribuito)	σ ₁₀ ≥ 30 kPa	UNI EN 826
Resistenza al carico puntuale	F _P ≥ 500 N	UNI EN 12430
Coefficiente di resistenza alla diffusione di vapore acqueo	μ = 1	UNI EN 12086
Calore specifico	$C_{p} = 1030 \text{ J/(kgK)}$	UNI EN 12524
Densità (doppia densità)	$\rho = 110 \text{ kg/m}^3 \text{ circa (190/90)}$	UNI EN 1602

Spessore e R_D

Spessore [mm]	60	70	80	100	120	140	160	180	200
Resistenza termica R _D [m²K/W]	1,65	1,90	2,20	2,75	3,30	3,85	4,40	5,00	5,55